An Overview of the Statistical Methods Used for Inferring Gene Regulatory Networks and Protein-Protein Interaction Networks
نویسندگان
چکیده
The large influx of data from high-throughput genomic and proteomic technologies has encouraged the researchers to seek approaches for understanding the structure of gene regulatory networks and proteomic networks. This work reviews some of the most important statistical methods used for modeling of gene regulatory networks (GRNs) and protein-protein interaction (PPI) networks. The paper focuses on the recent advances in the statistical graphical modeling techniques, state-space representation models, and information theoretic methods that were proposed for inferring the topology of GRNs. It appears that the problem of inferring the structure of PPI networks is quite different from that of GRNs. Clustering and probabilistic graphical modeling techniques are of prime importance in the statistical inference of PPI networks, and some of the recent approaches using these techniques are also reviewed in this paper. Performance evaluation criteria for the approaches used for modeling GRNs and PPI networks are also discussed.
منابع مشابه
Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملComparison of Hubs in Effective Normal and Tumor Protein Interaction Networks
ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملIdentification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013